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R = z/r 

a = ßc k r 
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Q      QUO 

a = a F(R) 
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a , an 

U  R 

particle velocity and its peak value at the source, respectively 

signal and pump fields, respectively 

continuous and discrete spectral forms of u , respectively 

axial component of u 

zero-order Laguerre mode, and real, imaginary parts, respectively 

small signal speed of sound 

Y + 1 
nonlinear parameter (e.g.,  B = J—»— in gases where y = Cp/Cv 

= 1 + -^ in liquids) 

Peak Mach Number 

angular frequency of a pure tone radiated by the source (e.g., 
pump wave) 

angular frequency of a signal in the medium 

'frequency up-shift' ratio 

space-time coordinates 

radius of a circular piston projector 

piston projector Rayleigh distance 

normalized off-axis coordinate 

nondimension.il retarded time coordinate 

normalized range coordinate 

scaled source tone and signal parameters, respectively 

'stretched' range coordinate (e.g., F(R) = sinh R for a plane 
piston projector) 

thermo-viscous attenuation coefficients at angular frequencies 
U and (] , respectively 

wavenumbers at angular frequencies co and 9,  , respectively 

Laguerre Polynomial of order k 
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\l = K 

P;/P; s 

D+(0) 

Jm(x) 

zero order Struve and Neumann functions, respectively 

ia0 complex wavenumber at angular frequency ft 

angle of intersection between signal and pump wave normals 

signal e-cess 

up-converted directivity functions 

Bessel Function of order m 
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Figure Captions 

Figure 1.  Axial Pressure Field of a 454 kHz Signal Radiated by a 3" Diameter 

-3 
Proiector in Fresh Water [r = 1.5 yds, ü r = 7.35 x 10  Np, 

0 10 

B/A = 4.9]. 

Figure 2a. Axial Pressure Field of a 454 kHz Signal in Fresh Water. 

Figure 2b. Axial Pressure Field for the Second Harmonic of a 454 kHz Signal 

Generated Via Nonlinear Self-Interaction of the Fundamental in 

Fresh Water. 
A 1» 

Figure 3.  Finite-Amplitude Absorption Losses Incurred by a 454 kHz Signal 

in Fresh Water. 

Figure 4.  Far-Field Finite-Amplitude Absorption Characteristics 

[20 Logl0ao  -  SLo ♦ 20 Log10 (/I ß Wp^2) 

SL* + 20 Log10(2TT /2 B x Uf-Vp^3)  =  SL* - I'M  dB 

in water (1 ybar = reference pressure) 

where SL = 20 Log(p r / /l) 
o o o 

and SL*  = 20 Log(p r f / /I) ;   f  in kHz], 
o o o o o 

Figure 5a. Signal-Excess Characteristics 

Figure 5b. Up-Converted Directivity Characteristics 

Figure 6.  Approximate Signal-Excess Characteristics 

iii 
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Abstract 

'Following a review of the literature on Parametric Receiving Arrays, 

the problem of defining their performance characteristics under saturated 

and unsaturated conditions is considered.  Basically, the problem is resolved 

by establishing equations for the axial field of a spatially symmetric pump 

wave in the spectral domain via Kuznetsov's nonlinear paraxial wave equation. 

As a biproduct of this analysis, a simplification of terms involving the 

phase of pump wave in these equations results, upon transformation to the 

time domain, in a new form of Burgers' equation for a plane piston projector. 

Unlike previous forms of Burgers' equation, the latter combines the effect of 

wave interactions in the near and far field regions of the source.  Numerical 

comparisons of the more complete spectral equations and the spectral form of 

the new Burgers' equation are shown to be in good agreement with experimental 

results previously reported in the literature.  Approximate solutions,of these 

equations are also derived. The three methods thus established for represent- 

ing the pump field are then used to derive scaling laws for parametric receiving 

arrays, which clearly show the limiting effect of pump wave saturation upon 

the conversion efficiency of the up-conversion process as the pump amplitude 

is increased indefinitely. 

iv 
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Introduction 

1.2 
In his work on the scattering-of-sound-by-sound, Westervelt  ' con- 

cluded that two overlapping perfectly collinated plane waves of finite- 

amplitude would only give rise to scattered waves when propagating Ln the 

same direction - a result in keeping with the anharmonic resonance conditions 

discussed by Landau and Lifshitz.  This work led naturally to his funda- 

mental paper on the Parametric Array where Westervelt deduced that two 

perfectly collinated coterminous progressive finite-amplitude plane waves 

of angular frequencies U.  and OJ«  traveling in the same direction in an 

unbounded nondispersive fluid medium would interact to produce highly 

directive intermodulation spectral components; that of frequency U^ - ttj ' 

referred to as the "difference-frequency signal" being the lowest in the 

spectrum.  Since he was primarily interested in the generation of low 

frequency waves, Westervelt's4 analysis required that the primary frequencies 

be very nearly equal.  This requirement, which makes possible the process 

of frequency "down-conversion," is basic to parametric transmitting arrays, 

although of course upper sideband components are also formed. 

Alternatively, when viewed analytically, simultaneous radiation by the 

source of frequencies b».  and w« with equal finite-amplitudes is 

equivalent to sinusoidal modulation of a finite-amplitude carrier wave or 

^2ump"  wave of frequency U = ^i +  'V  by a signal of frecluency fi/2 ' 

where Q ■ (d. - III, .  It follows therefore, from the inherent "quadratic" 

nonlinearity of the medium that the spectral components of the modulating 

envelope squared and in particular the difference-frequency Q , will be 

amplified or "pumped" at the expense of the carrier until the amplitude of 

the latter is reduced by this and other absorption losses to a level where 
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it can no LonMr sustain a nonlinear interaction.  The reader should note 

at this point that the Interaction Is not confined to suppressed carrier 

modulation, as exemplified by the work of Eller and Merkllnger on more 

general forms of modulation.  Viewed in this manner however. It Is clear 

that the process of parametric amplification can be Interpreted In terms 

of the concept of finite-amplitude self-demodulation Introduced by Berktay 

and justified experimentally by Moffett, Westervelt, and Beyer. .— 

Likewise, In the converse process of frequency "up-converslon," para- 

metric receiving arrays are formed by projecting a finite-amplitude pump 

wave of angular frequency U  Into the medium to serve as the carrier wave 
o 

for a weak incoming signal of frequency Q , where U /Q » 1 <  In this 

Instance the pump field Is augmented by the spatial component 

of the signal along the pump axis, assuming of course, that both the pump 

wave and this component are traveling in the same direction.  The resulting 

nonlinear interaction gives rise to an intermodulation spectrum as before, 

the sum and difference frequency components co + Ü    being of greatest 

interest.  Since co /^ is assumed to be considerably greater than unity 
o 

however, these sidebands are now in close spectral proximity to the pump 

frequency, but unlike the latter their directivity is 

equivalent to that of a virtual-end-fire line array of length LAn  (In 

wavelengths of the signal frequency) where L is the distance from the pump 

projector along its axis at which a receiving hydrophone resonant at OJ + fi 

or OJ • 0 is located.  Upon reception the "up-converted" signal is fed 
o 

to a low pass filter to remove the pump frequency and recover the signal of 

frequency D . 
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12 4 
Although implicit in Westervelt's work, * '  the process of Parametric 

reception was identified and made explicit by the extensive theoretical 

9 
and experimental investigations of Berktay who in cooperation with Al- 

Temimi     considered the practical implications of the up-conversion 

■in -x  I 

process.  Subsequent experimental work  '  has been directed to long wave- 

13 
length up-conversion in fresh water lakes  and to the consideration of arrays 

of parametric receivers,  thus involving significant practical extensions of 

the original scaled laboratory experiments.  Further theoretical extensions 

have also been made to provide a more precise description of the pump fields 

radiated by practical sources and the resulting effect of such refinements 

upon the analytical form of solutions for the up-converted fields. More 

I -7 1 Q 

recently Goldsberry  and McDonough  have derived optimum operating con- 

ditions for parametric receiving arrays from systems analyses based on 

Berktay and Al-Temimi's analytical model  for a spherically spreading 

19 
pump wave.  With <.he exception of a preliminary study by Bartram  there 

has been no systematic study of the effect of finite-amplitude absorption 

on the performance of parametric receivers, which although insignificant 

at low pump amplitudes, ultimately determines the maximum achievable efficiency 

of these arrays when the pump wave becomes saturated.  In order to provide 

i 20 
a more complete analysis of this effect we now consider how Kuznetsov s 

nonlinear paraxial wave equation (which on account of its parabolic form 

is ideally suited to numerical solution) can be used to define the acoustic 

field of a pump wave radiated by a plane piston projector i.nder both 

saturated and unsaturated conditions.  Following this analysis we will 

then determine the effect of saturated pump waves on the conversion 

efficiency of parametric receiving arrays, and hence deduce scaling laws 

to define their performance capabilities. 
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1.  Kuznetsov s Equation 

In this section we wish to investigate the distortion of progressive 

20 
finite-amplitude waves in an unbounded nondispersive fluid via Kuznetsov's 

nonlinear paraxial wave equation, which it should be noted, is a more general 

forn of the inviscid paraxial wave equation previously derived by Zabolotskaya 

1 22 
and Khokhlov.' '    Introducing a rectilinear Cartesian coordinate system and 

considering the propagation of progressive plane finite-amplitude waves 

20 
along the positive  z  axis, Kuznetsov's  equation can be expressed as, 

D 
D 
:: 

o 

~- - (1/2 k0)V
2 u 

3T9Z       U    xy 

2 
9 I / A , x  9u ,   3 u 1(B£ kn)u ^- + ar 
3T 

w^iere 

and 

u = v/v  , 
o 

e  = v /c 
o     o  o 

o £        I 3T2 

kn = Q/c  ,  X    =    B(t 
u      o 

(1) 

-)  (2) 

(3) 
xy 3x 9y' 

In this notation v  denotes the particle velocity resulting from propagation 

of an acoustic disturbance in the fluid, v  being its peak value at the 
o 

source;  p  is the static density,  c  is the small-signal speed-of-sound, 
o o 

e  is the peak Mach number at the source, and  0 is the second-order non- 
o 

linear coefficient of the fluid; Q is an, as yet unspecified, angular 

frequency, and a0 is the corresponding small-signal thermo-viscous 

attenuation coefficient. 

Assuming that an axially symmetric disturbance is established in the field 

via radiation from a baffled piston source of radius a , it is convenient to 

normalize the variables x and y with respect to a and combine them in 

23 
a single variable E,    defined by Rudenko, Soluyan, and Khokhlov  as. 
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* k 

f, =  (x/a)2 + (y/a)2 

Expressing the x and y derivatives in terms of f, we obtain. 

3x   3x 3^ '    9y    9y ^ 

hence, from Equations (3) and (4), 

xy 
E.    A 

_ 3x it, I9y  ^ 

(4) 

9C 

Substituting Equation (5) in Equation (1) thus gives. 

(5) 

äFFäl - (V /2)  ac (c ^ ^ Kv-ff^^} (6) 

Normalizing z with respect to a reference 'Rayleigh distance'  ro = ^a /2 

where k - W /c  .and the, as yet unspecified frequency u»  is assumed to 
o   o  o 

be radiated directly by tne source. Equation (6) becomes. 

i2 3 u 
9T3R 

u 
o 3 3u] 

[ fi J 3C 

2 
9 /   3u , ,   > 3 u 
97 JV 97 + (afiro) ^2 (7) 

where R = z/ro ,  ro = k/^ ,  ko = «J^   .  a^ = ßCoknro  . (8) 

Alternatively, in terms of the 'stretched coordinate system' introduced 

24 by Blackstock,"  Equation (7) becomes. 

&  . 
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where 

du   /, /, \ 9 srxr - (I/o ) or dTdO       O at. 

a  = Be k r 
o      o o o 

Acoustic Reynolds number, 

8u 

oej 3T ^  3T      O   O  ~ 2 

0 R ,  and T 
o o 

o /a r  is the 
o o o 

(9) 

(10) 

It is clear from inspection of Equations (7) and (9) that for one dimtusional 

24,25 
waves they reduce to the plane wave form of Burgers equation. 

Returning to Equation (7) and expressing u la terms of its Fourier 

transfDrm u  we obtain, 
CO 

;. 
where 

9u 
,: 

3R 
+ i 

o 
0) 

_3_ 
9C 

f  9u 1 u 
3C J 

+ (a r )u 
U O M 

u (R,0  = C. u(R^,T')e-i(w/")T'dx' 

JQ (u *u)   (11) 
Ui      Ui 

(12a) 

*. 

•^ 

u(R,f,,T)  = 
i t*       tm   .% i(a)/Q)T 

27r ■'-«> 
/  u (R.Je3 dWQ) (12b) 

and 

u *u 

u 

i r  U   rU ,d(4//0) 
2TT •'-oo   (jj-OJ  u 

^(«/n)- 

(12c) 

(12d) 

* ■ 

If the signal of angular frequency bl  radiated by the source is sinusoidally 

modulated by a pure tone of angular frequency 0 then for integral values 

of N = w /ft > 1 , U assumes the discrete values w = nft and Equation (11) 
o  — n 

becomes the infinitely coupled set of partial differential equations given by, 



  

9u 
 n 
3R 

+  i 
r      9u   ' 

N 9 n 
n i ac 3^   J 

,      • f 0   ^ n 0 
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+  (a r  )u      =    1 
no    n 

n-1 

n 
f U      ' 

0 E     u       u 
N j / n-m m 

m=_oo 

■;-• 

Eu      u+Zi.  uu 
n-n m ,   n+m m 

m=l m=l 
(13) 

where  u  , denoting the complex conjugate of  u  , appears in Equation (13) 
m m 

* 
because u(R,C,T)  is a real valued function and consequently u_m = um 

from Equation (12a).  Obviously, if the source waveform is unmodulated, we 

simply set  N = 1 . 

At this point we note that since the left-hand-side of Equation (13) is 

similar to the time dependent form of Schrödinger's equation, we can express 

the axially symmetric spectral amplitudes u (R,0 as a Laguerre polynomial 

expansion given by. 

u (R,C) = e 
n 

-(n/N)C/l- iR Zi/(R)L (0 

k=02 n   k 
(14) 

where the Laguerre polynomials L, (O  obey the following relationships, 

(k!)2,  k - t 

0  ,  k # Ä 

26 

/ e'^L. (C)L„(C)d^ = Jo     k   x. 

Lk(U " kLk-l(0  =  "kLk-l(C) 

(15a) 

(15b) 

,*» - 

5L'k{C) - kLk(0 ■ -k L^^C) (15c) 

.-2 
L (C) • 1 I   MO - -C* 1 I  L9(C)  = i    - 4C + 2 , etc.(15d) 
o 1 ■ 

Substituting Equation (14) in Equation (13) and employing Equations (15a) 

through (15c) to simplify the resulting expressions, we obtain after some 

manipulation. 
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cur  n 
dR' anro - T~- 1R 

fn-1 r o   \\ n-i  •   .      a 
'  {   l       ZI    Ak^S  / 

J _ 

where 

and 

m=l s,£=0 
sJ- n-m m 

oo oo               "k 

+ 2 E ZI    *\*LJL 
i o-n     s!L  n+m m 

m=l s,x.=0 

^ k. y 
r e^ L(C)L «)L.(C)45 

'•* 
L r r -f' 

■k^"~sx' 

2m/N 
1 + 

1 + R ^(O^CÜL^Od^ 

(16) 

(17a) 

(17b) 

l 

In order to solve Equation (16), we require the initial values ♦-(O) .  These 

can be obtained from Equation (14) if the boundary value 11^(0,0  is pre- 

scribed.  Thus, by means of the orthogonaJ relationship defined by Equation 

(15a) we have, 

^(0) 
.k-' , 

r e-^1 - n/N) u (0,ULlf(OdC  • 
'o n    k 

If, for example,  u (0,0  =  li  0 <. C <. 1 

0. 5 > J 

and  N = 1  then. 

(18) 

(19) 

D 
D 
D 
B 

where 

and 

♦J<0) ■ k - 1 
n - 1, 

• 

n,   k  >   1 

*1<0) = /.V" df, 

Lk-1(0)-en'1Lk-l(1)' ; 

^(0) 
n - 1 

n-1 
n > 1 

kn  ] k-1. . 
.^^Tj^n  (0) ; 

^(0)  = 1 

(20a) 

(20b) 

(20c) 
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In general, the tripple sums on the right-hand-side of Equal  . (16) 

are very difficult to evaluate, particularly as Equations (17a) and (17b) 

cannot be reduced to simple closed form expressions if k, s, Ä, are non 

zero.  For any value of  k however, since the largest terms in the double 

summation over s and £ are those for which s = £ , we can neglect the 

terms s ^ £ over small increments of the distortion distance a F(R) , 

whäre  F(R)  is a function which has yet to be defined.  Moreover, since 

the field is most intense along the beam axis, the particular values 

s = £ = 0 are dominant, thus giving the resulting approximation to Equation 

(16), valid for small values of o F(R) , o 

D 

I : 

n 
dR 

where 

and 

i(l + k) 
no   L - it j 

t a    ,  n-1 
n   o   . k  _  o  . o 

rn      N   4 J  oo  . Tn-mTm 
m=i 

* 

+ 2 E Bk (m)^° ijJ0 
oo   n+m m 

m=l 

oo 'rrjV e-\(Odc , 

B  (m)  = 
oo 

r e-^ 
1 + 

2m/N 

1 + R: 

A"  =  1 
oo 

^ L. (OdC  ,   B_(m) 
k oo 

(21) 

(22a) 

1 + 
2m/N 

1 + R2 

(22b) 

D 
D 
:: 

Inspection of Equation (21) shows that the zero order Laguerre mode (i.e. 

k = 0) is now independent of the higher order modes (i.e. k = 1,2, . . .), 

which can all be derived from it a-posteriori.  Physically, this implies 

that the axial field is predominantly defined by tho zero order Laguerre 

mode, which in turn is primarily responsible for distortion of the off-axis 

field, the latter having little effect on the axial field over small dis- 

tortion distances. 
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Furthermore, since small increments of the 'scaled' range öoF(R)  imply 

large increments in actual range R for o << 1 , the model ensures that 

all Laguerre modes other than zero will be insignificantly small under 

unsaturated conditions.  Thus, for a monofrequency source (i.e. N = 1) the 

unsaturated harmonic directivity functions formed by self interaction of 

t'.e fundamental frequency component in the medium are given by Equation (14) 

as Gaussian beam patterns, 

; 

D (R.O 
n 

e-n^(l - iR)/(l + R^)||e-nC(l iR)/(l + RV 

=  e -2ttC/(l + R ) 

-2nC/R2     - T(k a sin 9)2 e       = e 2 o R » 1  . 

(23a) 

(23b) 

23 
Thus, in keeping with Rudenko, Soluyan and Khokhlov's investigation,  the 

model is capable of defining the major lobe, but not the minor lobe structure 

of the actual field.  Under saturated conditions as more and more higher- 

order Laguerre modes are included in Equation (14), the harmonic directivity 

functions become. 

D (R.O n 

u (R,Ou (R.O n n  

u (R,0)u (R,0) 
n     n 

1 + 

I  I    ♦ <R)* (R)L,(OL0(O 

E E * (!)♦ (R)^ (0)L.(0) 
k.^1 "   "    k   ^ 

-2n^/(l + R ) (24) 



- 

0 

■11- 

Under unsaturated conditions, lj> ♦ 0 for k ^ 0 , so that Equation (24) 

reduces to the form of Equation (23) as required. With increasing values 

of a  therefore, as the number of terms in the summations of Equation (2A) 

increase, the directivity functions should broaden in accordance with the 

27 
experimental results of Shooter, Muir and Blackstock. 

Since the zero-order Laguerre mode can be evaluated independently of 

the higher order modes for the model under consideration, it is expedient 

to consider the differential equations for this mode alone.  These are 

given by Equation (21) as 

d^ 
n 

dR 
ex r -   
no  1 - iR 

n-1 

,  n-m m 
m=l 

00 

+ 21 
m=l 1 + 

2m/N 

1 + R2 

,o  ,o 
n+m m (25) 

• > 

In Appendix A it is shown that under unsaturated conditions the second 

harmonic field in an inviscid fluid obtained from Equation (25) by the 

method of successive approximations is identical as a,r -*■ 0    to the 
1 o 

approximate solution previously derived from the inviscid form of 

23 
Equation (9 ) by Rudenko, Soluyan and Khokhlov. 

Since t)(  is complex it is convenient to express it in terms of its 
n r 

real and imaginary parts ij;  and ijj  respectively where. 

:: 

= ^ - iij; 
n    n 

"TO -TO ♦ =   i> -n     n -n 
7° 

Substituting Equation (26) in Equation (25) and equating the real and 

imaginary terms respectively we thus obtain. 

(26) 
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_d_ 
dR 

'*° 

k\ + (a r ) 
n o 

?0 

fnl 
n-l 

I 
m=l 

1 + R 

>o 

fR K 

n-m   n-m 

-o    70 
n-m   n-m 

m 

m 

/    1 r a  1 00     / 

n 0 z 
N / 

V.           / i.     J m=l 1 + 
2m/N 

1 + R2 

n+m 

7° 

-7° 

Hj) n+m 

ni 

m 

(27) 

With the exception of the "diffraction-induced spreading losses" on the 

2m/N 
1/1 + in left-hand-side of Equation (27) and the coefficient 

I + 1" 
the summation on the right-hand-side, the coupled harmonic modes are similar 

28     . . 
to those previously considered by Bellman, Azen and Richardson   in their 

numerical analysis of the plane wave form of Burgers' equation.  Solving 

these equations for a monofrequency source (i.e. N = 1) by a predictor- 

29 
corrector method of the Adams Moulton type,   we examined, among other 

27 
cases, the experiment conducted by Shooter, Muir and Blackstock.    In this 

instance a 3" diameter plane piston projector operating at 454 kHz in fresh 

water at 17.80F was driven at source levels from 100-135 dB re 1 ybar at 1 yd. 

27 
Assuming the same parameters as those previously chosen,  we have 

a /f2 = 2.6 x 10"1ANp/m at 17.80F,  ro = 1.5 yds, and B/A = 4.9 ; 

consequently, we obtain a r  = 7.35 x 10  Np.  Varying Of  in accordance 

with the ranee of source levels mentioned above, v.~ computed ip  at par- 0 n 
27 

ticular distances from the source selected for the experiment,  giving the 

axial pressure functions for the fundamental frequency component depicted 

In Figure I.  It can be seen that our results are in excellent agreement with 

^ 
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measurements except at ranges close to the source (i.e. 0.76 yd and L.8 yd) 

27 
where an examination of Figure 6 in Shooter, Muir .nd Blackstock's article 

shows that the experimental curves at these distances are not consistently 

scaled (as they are at all other ranges) to give an extrapolated peak source 

level at 1 metre.  For comparison, compuced valuer of the fundamental, and 

second harmonic are shovn in Figures 2a  2b, and in Figure 3 the "extra 

decibel loss" is given as a function of R at different source levels 

corresponding to those of the experiment.  Although the harmonic directivity 

functions for this example are not shown here, they can be computed via 

Equations (21) and (24) from the data already obtained.  Our results have 

clearly shown however, chat the axial field is accurately represented by 

^0(R) , thus justifying the assumptions made in deriving Equation (21). 
n 

Since the real and imaginary parts of Equation (27) are coupled on the 

left-hand-side by terms whose coefficient  (1/1 + R )  approaches zero as  1/R 

2m/N 

1 + R2 

approaches  1 as  R  increases indefinitely, we now propose to neglect these 

for R >> 1 , and since the coefficient 1/1 + - on the right-hand-side 

terms so that recombining the ieal and imaginary parts of *  we obtain an 

approximate form of Equation (25) given by. 

diT 
 n 
dR 

a r + 
n o 

1 + R 
^n *  i l>0 + 2    1    **£ 

m      ..  n+m m 
m=l 

(28) 

In this equation the effect of diffraction i   h« acoustic field is maintained 

2 
by the spreading-loss term, whose coefficient  (R/l + R )  approaches zero as 

R approaches zero and decreases as 1/R for R >> 1 .  Using Equation (28) 

to rederive the unsaturated solution for the second harmonic formed in an 

23 
inviscid fluid, and comparing it with Rudenko, Soluyan, and Khokhlov's 

solution of the inviscid form of Equation (25), as given by Equation (A ) 

of Appendix A, we find that neglecting phase differences, the absolute value 

of the ratio of the two solutions, designated Q , can be expressed as, 



- 
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Q = 

i r 
2  / {Ln(l + 

9   2 -1    2 
(1 + R )}  +4 {tan  R} 

sinli"1 R 

(29) 

Evaluating the ratio Q as a function of  R , it can be seen from Table 1 

that the solution of Equation (28) for the second harmonic, approaches but 

never exceeds 10% of that derived from Equation (25).  It can also be seen 

from Table I or from inspection of Equation (29) that the difference between 

the two solutions tends to zero as R approaches zero or infinity.  It seems 

reasonable to assume therefore, that Equation (28) will provide a good 

approximation to the absolute value of ^  .  Further confirmation of this 

conclusion is provided by Figures 1 and 2 for the case of Shooter, Muir, 

27 
and Blackstock's experiment,  where values of the fundamental, and second, 

harmonics computed from Equation (28) are seen to be in good agreement 

with the results obtained from Equation (25) based on the same numerical 

procedure. 

Using an approach previously adopted by the author  in applying 

31 
Merklinger's  heuristic plane wave analysis to the spherical wave form of 

Burgers' equation, it can be shown that the fundamental frequency component 

of Equation (28) for a monofrequency source (i.e. N = 1) may be represented 

by means of an approximate expression which differs slightly from a similar 

32 
approximation obtained heuristically by Merklinger, Meilen, and Moffett. 

This approximation is given by, 

29 

30 

-(a1r_)R/      2 1 o' 
^(R) = 

V/T7 R 
1 + 

R J^Vo^' 
dR' 

(30a) 

-(OLrJly 
0 / /1 + R^ 

AT TTO 

, for R » 1 (30b) 

[H (2 ct.r ) - Y (2 OUT )]' 
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TABLE  1 

K |   /(LnU + R2)}2  + Mtan"1!*}2 sinh    R 

LO 
-3 10 10 -3 

10 
-i LO -2 10 

-2 

10 
-1 in -i 10 

0.86 0.88 0.98 

10 2.74 T.0O 0.91 

10 4.86 5.30 0.92 

10" 7.08 7.60 0.93 

10 9.34 9.90 0.94 
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33 
where  H  and  Y  are zero order Struve and Neumann functions, resoectively. 

o       o 

As shown in Figure 1, results obtained from Equation (30a) are also in good 

agreement with those computed directly from Equation (28), thus lending 

credibility to the approximation. 

Another interesting result inherent in the form of Equation (30) is 

that the finite amplitude absorption loss incurred by the fundamental in 

propagating through the medium, designated the "extra decibel loss" by 

Blackstock.  and hence denoted  EXDB , can be expressed as, 

EXDB =  - 20 Log 

10 Log 

10 

10 

(A77) exp[(O-t )E] 

1 + 

-2(a.r )R' a    rR 1 o 
dR' 

10 

Z Jo   /l + R-
2 

Log10{l+ (TTao/4)
2[Ho(2 a^) -Y^a^)] 

(31a) 

for R » 1 (31b) 

I 
1 
I 

II 

Denoting the "extra decibel loss" defined by Equation (31b) at  EXDB^ to 

indicate that for fixed values of a  it represents the maximum finite-amplitude 
o 

absorption loss incurred by the fundamental, the curves of Figure 3 were computed 

showing the variation of this parameter with a    and a r  .     Since 0    is 

related to the source level, as shown in the caption of Figure 4, these 

characteristics can be used to obtain the "saturation threshold" of a 

monofrequency source (i.e. the difference between a desired source level and 

the appropriate value of EXDB^) once o^r  and ao are specified. 

Having provided some degree of justification for Equation (28), we 

now take its inverse Fourier transform to obtain a new form of Burgers' 
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equatlon for a plane piston source, which can be expressed as 

where 

M 
3R 

R ^     -   (öo/N) 
^                        * 

^(R,x 

00 

)     =        Z     ^B(R)   e 

^ - (a r ) -^ 
3T  (aoro)  9T2 

(32) 

(33) 

It can be seen by inspection that if  R << 1 , Equation (32) approaches 

the plane wave form of Burgers' equation.  Alternatively, if R >> 1 , it 

assumes the spherical wave form of Burgers' equation, as required. 

Assuming further that the axial field is determined primarily by 

^0(R)  it folljws from Equation (14) that 

u(R,o,T)    IHR,T) (34) 

In order to obtain the Fubini,35'36 Fay,37 40 and asymptotic far field34»41 

solutions of Equation (32), it is convenient to reexpress it in terms of the 

'stretched coordinate system introduced by Blackstock. 4 This transformation 

is carried out in Appendix B yielding the scaled form of Equation (32) pre- 

scribed by Equation (B7) as, 

£- (1/N) II I? 
3a  U/N;  3T 

r"1 cosh(G/o ) 1 -^ = o 
o        0 i 3T

2 
(35) 

where 

and 

w = iK 1 + R 

a/o F(R)  =  sinh  R  . 

(36) 

(37) 

The established solutions 5_  of Equation (32) for a monofrequency source 

are outlined in Appendix B, but before concluding it should be noted that 
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the unspecified "distortion function"  F(R)  previously mentioned in the 

text has now been equated to sinh  R in Equation (37).  Strictly speaking, 

a more precise form of  F(R)  for the case of Equation (21) would be the 

numerator of Equation (29), but as we have shown in Table I, this differs 

only marginally from sinh R . 

Having thi s  completed our discussion of the field equations governing 

the propagation of finite-amplitude waves radiated by a plane piston pro- 

jector, we will now consider how these equations can be used to provide 

scaling laws for parametric receiving arrays. 

L   i, 
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2.  Parametric Receiving Arrays 

Since the analytical model that has been teveloped can be used to 

define the field of a finite-amplitude pump wave radiated by a plane piston 

projector under saturated or unsaturated conditions, we now wish to consider 

the up-converted fields generated via interaction between the pump and a 

plane wave of angular frequency Q whose wave normal intersects the pump 

axis (i.e. the positive  z axis) at an angle 8 .  We begin oy expressing 

the component of the signal along the pump axis in .he form, 

t(Qt - X0z cos 9) u (z,t)  = Re ^ u e      H 
So 

Re{use
i(fit-  V  + 2MnZ} 

=    Re {uBÄ-V + l(Qt-kn, + 2V)} 

whe re    Xü-kü- iaü ' and   *Q - hi sin (e/2)    • 

(38) 

(39) 

ill 

We now let T • 0(t - z/c ) = (fk - knz) ,  R = z/r  , and r = k a /2 so O 111 o o     u 

that Equation (38) becomes. 

-(CUt )R + i[T + (2M0r)R] 
u (R,T)  =  Re ■( u e  U o MO 
s I s o 

(40) 

If u  is the pump frequency, we arbitrarily chose its time waveform at 
o 

the source tc be. 

u (O,T) = sinCli)  ;    ■ • « /Q . 
P 0 

(41) 
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The spectral amplitude of the component of the signal along the pump axis can 

thus be expressed as 

*J(R) AR) s 

,c -(ar )R + i(2M0r )R . 
= ip e  1 o       iZ o  ; s      si 

o     o 
o^ (42) 

hence from Equation (26) we have, 

^(R) -^ e"(airo)R cos(2MnroR) 
o 

4>(R)  =  -^  e"
(airo)R sin(2MnroR) 

o 

Likewise, the spectral amplitudes of thr pump wave at the source can be 

arbitrarily expressed as. 

(43a) 

(43b) 

<(n)   =  Ao) N p 
(44) 

E n 
jiving   lj»H(0)  = 0 

and      C(0)  = 1 
N 

(45a) 

(45b) 

m   «• 

m   * 

Ik  li 

With the boundary conditions for the pump field prescribed by Equations (45a) 

and (45b), we can now solve Equation (27) numerically to determine the up- 

converted frequency components #„..(R)  using Equations (43a) and (43b) to 

define AR)  and AR)  throughout the field.  This calculation can be 

repeal ted using different values of N ,  (aMr ) , and a  in order to express N o' 0 

the 'signal excess'  ^M. i/"i
1   as a function of the pump amplitude via the 

—   o 
parameter 0  for particular values of (ar  )  and R .  These calculations K o No 
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:: must then be repeated for different values of 0 in or ler to determine the 

spatial directivities of the up-converted fields.  Sln-e this is a very 

lengthy process it is expedient to take advantage of the fact th; t in most 

applications of interest the signal is considered to be very weak relative 

to the pump.  The equations for the up-converted spectral amplitudes k^, 

can thus be considerably simplified by neglecting terms on the tight-hand- 

side of Equation (25) other than those that involv. lirect products of the 

pump and signal components giving, 

dr N+l 
dK N+l o IF N+l 

= i 

r 0 

ll \   Cl-n^m 
m=l m=l 

o 
4 j m=l 

V 
2 

,o,o 
Vi (46a) 

V     s 

dVl , f "M OL. , r 
dK N-l o  1 - iR •"N-l 

r a   •* 
1 N-l o 

N I * v               w 

□ 
: • 

N-l 

N-2 
I    |j£ .    ^0  + 2 z 

, rN-l-m m     , 
m=l ni=l 1 + 

21n/N 

1+R2 
^N-l+m*m A 

i 2 i m=l 1 + 

= i 

I 
[N - l' r a   i 

o 
CO 

I ■ I    N    > I   2   . m=l 

2m/N 

1+R2 

1 

1 + 
2/N 

1+R2 

1°    1° 
^N-l+nTm 

*N + 1  + 
1+R 

•♦J .(46b) 

Under unsaturated conditions the pump field is given approximately by Equation (25) 

as 

%(R)  =  1 - iR 
(47) 

.. 
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SubstltUtlng Equations (42) and (47) in the right-liand-side of Equation (46a) 

we thus obtain. 

d^ 
_N+1 
dR 

ex.,., r - 
N+l o  1 - 1R ^N+l  =  i 

N + l 
N 

0 ^ -(a r + 0,t )R + i(2Mr)r )R 
to e  No   1 o jj o 

1 - 1R 

(48) 

Since ij/3  (0) = 0 , the solution of Equation (48) enables the 'signal excess' 

\h0     (it*       for the upper sideband to be expressed as, 
N+l  s 

o 

1 ( o 
|0  / 1° 

-(ot^,r )R 

i 

K 
e^^o^' dR' 

/ 1 + R^ 

' sln{(Mr,r ^1  Q o 
I  (Mj,^)!  J 

-(0L^,r )R + l{tan 1R + (M r )R}, 
e  N+l o Xl o' 

(49) 

By means of the plane wave Impedance relationship, we can reexpress the signal 

as ü;0 1^°      = P'/P'   so that In terms of more conventional notation 
^N+l^s      ,  s 

o     +  o 
excess 

Equation (49) becomes. 

r w. ^ r cf  i + o 
P'/P;    ■ ■   1 

CJ 2  , 
+          0 k    o ' / 1 + R' 

fsln{(Xnr )R sin (0/2)}"  S2 o   

(X0r )R sin
2(0/2) 

U o 

-(a,r )R + l{tan~ R 
e  + o 

+(Xnr )R sin (0/2)}.(50) u o 

Inspection of Equation (50) shows that If R « 1 It approaches Berktay and 

Al.Temlml's solution lor a plane pump wave, and likewise if R >> 1  it 

approaches the form of the corresponding spherical pump wave solution, 

17 1 R 
utilized by Goldsberry  and McDonough  in their respective systems studies. 

Since Equation (50) is perfectly general and can easily be Incorporated in 

such studies it should prow useful in cases where the pump projector Rayleigh 

distance is large. 
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* • 

I 

Returning now to Equation (A6b) and substituting Equations (42) and (47) 

in the right hand side we obtain. 

av N-l 
dR 

1  1 .o 
[Viro -I^TRJVI =   i 

< 0    i 
N  -   1 o 

♦:• N ? j 
o 

1/1 - IR] -t- 
1 +   2/N, 

1+R   j 

1/1 + IR] 

1+^ 
l+R 

-(aMr + a.r )R - 1(2^ )R 
; v N O     L i) " o 

0 A 

1 + 
1 - IR 
1 + iRj 

1 + R 

3 + R' 

-(a r + u.r )R - i(2M0r )R e  N o   1 o    !^ o 
1 - iR 

[N - l' ( 20   i 
0 

,    3   J 
-(a r + a^r )R - i(2M0r )R , o  e  N o   1 o   \l  o  

1 - IR 

(51) 

Hence with li>N_,/^ , 

P'/P1 

p'/p'   the solution of Equation (51) gives, 
s 
0 

CO ' 2o    1 - o 
00 3 

\    0; ,                   , /1 + R 

sin (X.-r )R sin (0/2) 
 H o  

(Xnr )R sin
2(0/2) 

\l  o 

-(a r )R + i{tan~ R ■ e  - o 

-(Xnr )R sin
2(0/2)} 

n o 

(52) 

Comparison of Equations (50) and (52) shows that with the exception of a slight 

4 
change of phase the two solutions agree to within a factor -- 

4 
- 3 

U) 

CO. 

CO 

0). 

-(a r - aLr )R e  - o   + o 

1 . 

Since we are primarily concerned with the effect of a saturated 

pump field upon the up-converted frequency components we now repeat the previous 

derivation of i|/!   using Equation (30a) in place of Equation (47) to define 

i 
«. 

:: 
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the pump field.  In this manner, neglecting the small difference between ^+ 

and i]/' , the signal excess  p!/p'   ca" be expressed as, 
—  o 

-1. 

PI/P*  = l + s —  o 

Wj 

It 

-(u.r )R + 1 tan R 
o e  Z o    

IM / 1 + R" 

R 

o 

M2^o)R'   dR' 

/ 
1 + 

R1 -(2aMr )R" e   No dR" 
0  / 1 + R „2 

0) 

0 o 
2 

-(a+r )R + i tan R  ^ _■,   2 
^ ^-2  I   eXp{i m sin ^sin^ 0/2)} 

R 

/ 1 + R' 
m=-oo 

J (2X„r R') dR' 
m  Wo   (^) 

1 + 
R'  -(2a r )R,, 

e   No 
dR" 

0   / 1 + R „2 

On axis this becomes, 

- So 0=0 

0)+ 

0) 2 

-(a,r )K -f i tan R rR 
e  ZT o          dR' (54 

/ 1 + Rz 

/ 
1 + 

-(2aMr )R' 
a  cR e   N o 
o 

I 2 J 
dR" 

/ 1 + R 
„2 

m    - 

»    m 

Likewise, if  D (0) denotes the spatial directivity functions of the up- 

converted fields then from Equation (53), 

-1 
E  expU m sin  (sin 0/2)) 

m=-oo 

J (2Xor R') dR' 
m  " o     

a rR' -Haue  )R" 
o   e   No 

1 + 
2 J 

dR" 

/ 1 + R 
„2 

D+(0) (55) 
.k 

Jo 

dR' 

1 + 
0 t B -(2a„r )R" K e   No 

dR" 
0  / ! + R'-2 
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Evaluating Equations (54) and (55) numurically we obtained the results depicted 

in Figures 5a and 5b which clearly show in terras of 'scaled' coordinates the 

effect of pump wave saturation upon the up-conversion process. 

Finally, in order to obtain simple numerical estimates for values of 

ar =ar < 0.1, we make use of weak, shock theory by substituting 
N o   o o 

ip0(R) - e~^aNro;R/ [1 + -J-  Ln(l - iR) ]  in Equations (46a) and (4fib) to oh tain. 

p'/p' r,   rs +  o 

# 
f        1 ■ 

a)+ 2 — . Ki u 0 
0 o 

u 

1 - i -y R 

o 
o 

\- 1 
r 2 ii -   Ei —  y 

/ Oo    1 
-(a+r )R + i tan R - 2/o 

a       Z. o o (56) 

/ 1 + R' 

Ln ^ - 1 1" R]  -(a r )R + i tan^R 
     '   e  + o 

/ 1 + R2 
a > 1 
o 

(57a) 

■♦ i 

'w+l a 
o 

u 
o J 

2 

Uf 

b) 

/ 1 + R^ 

e-(a+ro)R+ i tan^R    0 R/2 < i 
— o 

(57b) 

1 
2/ 

Ln 1 + + 4< tan 
0 R o 

1 + R 

-(ot.r )R + i tan R , 
e  + o 

a R/2 > 1   (57c) 
o 

D 
Q 

:: 

D 

Having thus obtained approximate expressions for the signal excess, the 

"pump excess"  Pi/P!  can likewise be approximated by means of Equations 

(3.a) and (50) or (57c). 

Since  the  "signal  excess" as defined by Equation   (57c)   is virtually 

independent  of    M /ül       for    Id    » Q       it   follows  that  "scaled characteristics" 
+     o OS 

(p^/p^  )  exp{(cx+ro)R} 
s —  o 

on O  can 
o giving the functional dependence of 

readily be constructed for different valuer of the "scaled range" R , as 

shown in Figure 6, where the particular choice of  R equal to 10 and 100 

respectively, was quite arbitrary.  Using such characteristics, the signal 

i 
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excess can readily be evaluated.  For example, in the case of a 100 kHz 

pump wave radiated by a 0.3m diameter projector in fresh water, with 

r - 4.7« ,  a =2.6x 10~4 Np/m , and a r = 1.23 x 10" Np , Figure 6 
o 1 l  0 

gives the signal excess measured by a hydrophone located on the pump axis 

at  R = 100 (i.e. r = 470m) for 0.01 ^0^1  as. 

D 

a 
0 

Radiated Pump 

Watts 

Power Sign al Excess 

dB 

0.01 2 x 10"3 -67 

0.1 2 x 10"1 -53 

1.0 2 x 103 -47 

It is clear from this example therefore, that increasing the radiated pump 

power to enhance the signal excess reaches a point of diminishing returns 

when o = 1 ; a conclusion which is further confirmed by examining the 
o 

degradation of the directivity functions as ao increases. 

n 
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Conclusions 

Using Kuznetsov's20 nonlinear paraxial wave equation to derive coupled 

spectral equations for the axial field of a inite-amplitude pump wave radiated 

by a plane piston projector, we have shown both by numerical analysis and by 

successive approximation that the solutions of these equations are in good 

27 
agreement with well established experimental results  under saturatpd and 

unsaturated conditions.  We have also shown that when the pump field 1« 

modulated by the spatial component of a weak field transmitted along the 

pump axis that the resulting up-converted frequency components can be amplified 

by increasing the amplitude of the pump wave until a point of diminishing 

returns is reached when the latter exceeds its saturation threshold.  In 

order to supplement our numerical analysis of the up-conversion process, we 

have derived analytical expressions for the signal excess and pump excess 

whic.i are in reasonably good agreement with our numerical results for values 

of the small-signal-pump-wave-absorption-loss a^ less than 0.1 np.  These 

closed form approximations, which reduce at low pump amplitudes to Berktay 

and Al. Temimi's10 spherical pump wave solution, are sufficiently simple to 

be readily included in system simulation models where they can define upper 

bounds for the conversion efficiency and directivity of Parametric Receiving 

Arrays as the pump wave undergoes saturation. 
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APPENDIX A 

For an unsaturated monofrequency source of finite-amplitude  (i.e. 

a < 1 ,  N = 1)  the spectral amplitude of the fundamental frequency 
o 

component is obtained throughout the field, to a first approximation, by 

suppressing the rigbt-hand-side of Equation (22) so that. 

0 

dR   + 
i 

[Vo _ 1 - IRJ 

giving ♦Joo = 
-(ar0)l 

e 
1 -  iR 

= 0 ♦J<0) = 1 (Al) 

(A2) 

Substituting Equation (A2) in the right-hand-side of Equation (22), the 

spectral amplitude of the second harmonic field generated by self-interaction 

of the fundamental frequency component in the medium is given to second-order 

by the equation, 

dR 

10 
-2a1r R 1 o 

a„r - — 
2 o  1 iR 2  [1 - iRl2 

a2 = Aa1 (A3) 

i: 

hence. 

^(R) 

-(a.r )R 
IO     2 o 
 o e  
2    1 - iR 

R    ^Vo " ^Vo^' 
e  

1 - iR' 
dR' 

-(Aa.OR - i(2anrj  . _ iR  i(2a1ro)y 
o  e 

1 o' 1 o' 

1 - iR 

-(Aar )R - i(2alr ) 
o       1 o       1 o 
o e  
2        1 - iR 

dy 

|E1[i(2a1ro)(] - iR) ] - 1^1(20^)] 

(AA) 



where    Ei(x) 
rx  y 

e dy (A5) 

From the asymptotic limits of Ei(x) we obtain, for a^ » 1 , 

r 
i>02W 

-(2a  r   )R 
1 0 e e 

•(4a,r )R 1 o 

(1 - It)' 
(1 - iR) 

-(2a,r )R + 2i tan R 
1 o 

(1 + R ) 

-(Aa^ )R + 1 tan R ^ 
i o 

/l + R
2 

(A6) 

Alternatively, as a r ■♦ 0 , 

»5(1) _£ Ln(l - iR) 
2   1 - iR 

.2^2 -1^2 
i tan R - tan 

{Ln(l + R )} + 4 {tan R} 

l + R 

I ■ 2 tan"1R 

Ln(l + R ) 

(A7) 

This inviscid solution is identical to that obtained by Rudenko, Soluyan, and 

23 
Khokhlov. 
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APPENDIX B 

Combined Plane-Spherlcal-Wave Burgers' Equation in Stretched Coordinates 

24 i c Following Blackstock  we chose to redefine <p in terms of a new 

variable W , defined as, 

W = ijj/l + R' (Bl) 

Substituting Equation (Bl) in Equation (30), we obtain. 

g- fa /N/I + R2 " 9R   I. o J 
W ^r- - (a r ) —=■ = 0 

3T    O O 9T2 
(B2) 

Again, following Blackstock,  we introduce the scaled distortion distance 

0 =  F(R)  in Equation (B2), where F(R)  has yet to be defined, giving 
o 

3W 
8a 

1/NF'(R) /l + R
2 aw 

3T 

2 
[1/r  F'(R)] 2-| 

9T2 

r 

= 0 ; 

a /a r 
o o o 

(B3) 

The function F(R)  can now be defined by setting F'(R) = 1/ 

that. 

/l + R2 so 

,K 
F(R)  = 

dR' 

>0       /~        .2 
/l + R' 

= sinh 1 R (B4) 
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hence    0 =  0    sinh"  R     ; R = ■illh(o/a   )     . (B5) 
o o 

Frim Equations   (B4)   and   (B5)   we  thus  have 

F'CR)     - 

/ 1 + R2 

cosh(o/o ) 
o 

(B6) 

Finally, substituting Equation (36) in Equation (B3) the combined plane- 

spherical wa^e form of Burgers' equation expressed in terms of 'stretched' 

coordinates becomes. 

I g - am w |? - (r1 coBhco/o)} 4 " 0 
30 9T   (. o        o j 9T2 

For a monofrequency source (i.e.  N = 1) the solution of Equation (B7) can 

be expressed via the Fubini, 35'36 Fay,37-40 and asymptotic far-field  ' 

approxiir.itions as. 

(B7) 
8T/ 

■ 2J   (no) 
W(o,T)     =       E —  sin(nT)     , o < o  <  1   (B8a) 

, no — 

n=l 

oo               cosh(ö/o  )   sin(nT) 
j£.       I 2      ,       7T/2  <   O  <  Os(B8b) 

o    n=l    sinh{nr     (1 + o)   cosh(o/o  )} 
o o 

7      I1(A) 

J    YTÄT {exP[-(ö0
/r

0)   sinh(o/öo)]}sin(T) .    Os  < o < <»(B8c) 
o 

where A =  (2/^) cosh(ös/oo) (B9) 

and the 'scaled' shock-termination distance 0  is obtained by solving 



7! 

40 
transcendental equation, previously expressed by the author  in slightly 

different form for plane or spherical waves as, 

~ + ~  cosh(ö /ö ) 
a   o       so 
o   o 

a r 
o o 

-1 
(BIO) 

By varying a  we can compute O /o  for particular values of a r  , J J     0      o so oo 

evaluate A via Equation (B9) and thus obtain the total finite-amplitude 

absorption loss EXDB  for Equation (B8c) in the form, 

EXDB  =  20 Log..' oo &io 
2 b^L 
A Io(A) 

(Bll) 

Values of EXDB  obtained in the manner are found to be in good agreement 

with similar values calculated with the aid of Equation (31b). 
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